✨Định lý nhỏ Fermat
Định lý nhỏ của Fermat (hay định lý Fermat nhỏ - phân biệt với định lý Fermat lớn) khẳng định rằng nếu là một số nguyên tố, thì với số nguyên bất kỳ, sẽ chia hết cho . Bằng kí hiệu đồng dư ta có: :
Ví dụ: với .
Một cách phát biểu khác của định lý như sau: nếu là số nguyên tố và là số nguyên không chia hết cho , thì sẽ chia hết cho . Nghĩa là:
Nếu là số nguyên tố và là một số nguyên không chia hết cho thì sẽ chia hết cho .
Thực tế, phát biểu gốc là
Như thường lệ, Fermat không chứng minh định lý này mà chỉ thông báo:
(And this proposition is generally true for all series [_sic_] and for all prime numbers; I would send you a demonstration of it, if I did not fear going on for too long.) (**Tạm dịch**: Mệnh đề này là đúng với mọi dãy [sic] và với mọi số nguyên tố; Nếu không phải chứng minh của nó quá dài thì tôi đã gửi nó cho bạn.)
Euler lần đầu tiên công bố một chứng minh vào năm 1736 trong bài báo tựa đề "Theorematum Quorundam ad Numeros Primos Spectantium Demonstratio" trong tờ Proceedings của Viện St. Petersburg, nhưng Leibniz đã có chứng minh với ý tưởng tương tự trong bản thảo không được công bố vào khoảng trước năm 1683.
Tên gọi "định lý nhỏ của Fermat" được dùng lần đầu vào năm 1913 trong Zahlentheorie bởi Kurt Hensel:
(There is a fundamental theorem holding in every finite group, usually called Fermat's little theorem because Fermat was the first to have proved a very special part of it.) (**Tạm dịch**: Có một định lý nền tảng trong mọi nhóm hữu hạn, thường được gọi là định lý nhỏ của Fermat vì Fermat là người đầu tiên đã chứng minh được một phần rất đặc biệt của nó.)
Lịch sử xa hơn
Một cách độc lập các nhà toán học Trung Quốc đưa ra một giả thuyết (thường gọi là giả thiết Trung Quốc) rằng là một số nguyên tố thì . Đúng là nếu là số nguyên tố, thì . Đây là trường hợp đặc biệt của định lý nhỏ của Fermat. Tuy thế, điều ngược lại (nếu thì là số nguyên tố) là sai. Chẳng hạn, , nhưng là hợp số (gọi là số giả nguyên tố [pseudoprime]).
Chứng minh
Nếu thì hiển nhiên .
Nếu ,
liệt kê bội của :
, các số này đều phải nguyên tố cùng nhau với **p**Giả sử tồn tại : , với ,
.do cách chọn m,n thì điều này không thể xảy ra,
nên các số lập thành hệ thặng dư thu gọn modulo p
Nhân từng số với nhau, ta được:
.Hay
Fermat phát biểu định lý mà không chứng minh. Đã có nhiều chứng minh của định lý. Tuy nhiên định lý thường được chứng minh bằng cách dùng hệ quả của định lý Euler.
Tổng quát hoá
Một dạng tổng quát của định lý này là: nếu p là số nguyên tố và m và n là các số nguyên dương thỏa mãn , thì .
Định lý Fermat còn được tổng quát hóa bởi Định lý Euler: với modulo n bất kỳ và số nguyên a bất kỳ là số nguyên tố cùng nhau vớí n, ta có : trong đó φ(n) là ký hiệu của phi hàm Euler đếm số các số nguyên giữa 1 và n nguyên tố cùng nhau với n. Đây là tổng quát hóa của định lý nhỏ Fermat vì nếu n = p là số nguyên tố thì φ(p) = p − 1.
Tổng quát hơn nữa là Định lý Carmichael.
Một định lý khác tống quát hóa của nó nằm trong các trường hữu hạn.
Hệ quả đảo
Luận điểm đảo của định lý nhỏ Fermat là không đúng do nó sai với các số Carmichael. Tuy vậy dạng chính xác hơn của định lý là đúng với tên gọi là định lý Lehmer. Định lý đó được phát biểu như sau:
Nếu tồn tại số nguyên sao cho : và với mọi số nguyên tố là ước số của để :, thì là số nguyên tố.
Định lý này tạo nền tảng cho phép kiểm tra Lucas–Lehmer, một phép kiểm tra tính nguyên tố quan trọng.
Số giả nguyên tố
Nếu p là hợp số và có số nguyên a sao cho chia hết cho p, thì p được gọi là số giả nguyên tố cơ sở a. F. Sarrmus vào năm 1820 đã tìm thấy 341 = 11×31 là số giả nguyên tố đầu tiên,với cơ số 2.
Một số p là số giả nguyên tố cơ số a với mọi (a,p)=1 thì được gọi là số Carmichael (chẳng hạn 561).
