:_Bài này viết về thuật ngữ "bậc" dùng trong lý thuyết đồ thị. Mời xem các bài bậc (toán học) hoặc bậc để đọc về các nghĩa khác._ Trong Lý thuyết đồ thị, **bậc** của
:_Bài này viết về thuật ngữ "bậc" dùng trong lý thuyết đồ thị. Mời xem các bài bậc (toán học) hoặc bậc để đọc về các nghĩa khác._ Trong Lý thuyết đồ thị, **bậc** của
Lưu ý: Danh sách **thuật ngữ lý thuyết đồ thị** này chỉ là điểm khởi đầu cho những người mới nhập môn làm quen với một số thuật ngữ và khái niệm cơ bản. Bài
Lưu ý: Danh sách **thuật ngữ lý thuyết đồ thị** này chỉ là điểm khởi đầu cho những người mới nhập môn làm quen với một số thuật ngữ và khái niệm cơ bản. Bài
nhỏ|phải|Hình vẽ một đồ thị có 6 đỉnh và 7 cạnh Trong toán học và tin học, **lý thuyết đồ thị** (tiếng Anh: _graph theory_) nghiên cứu các tính chất của đồ thị. Một cách
nhỏ|phải|Hình vẽ một đồ thị có 6 đỉnh và 7 cạnh Trong toán học và tin học, **lý thuyết đồ thị** (tiếng Anh: _graph theory_) nghiên cứu các tính chất của đồ thị. Một cách
phải|Một đồ thị đơn có chu trình. Trong lý thuyết đồ thị, **chu trình** trong đồ thị là một dây chuyền đóng. Đồ thị chỉ gồm một chu trình với n đỉnh được gọi là
phải|Một đồ thị đơn có chu trình. Trong lý thuyết đồ thị, **chu trình** trong đồ thị là một dây chuyền đóng. Đồ thị chỉ gồm một chu trình với n đỉnh được gọi là
**Lý thuyết độ phức tạp tính toán** (tiếng Anh: _computational complexity theory_) là một nhánh của lý thuyết tính toán trong lý thuyết khoa học máy tính và toán học tập trung vào phân loại
**Lý thuyết độ phức tạp tính toán** (tiếng Anh: _computational complexity theory_) là một nhánh của lý thuyết tính toán trong lý thuyết khoa học máy tính và toán học tập trung vào phân loại
**Lý thuyết độ phức tạp tính toán** (tiếng Anh: _computational complexity theory_) là một nhánh của lý thuyết tính toán trong lý thuyết khoa học máy tính và toán học tập trung vào phân loại
nhỏ|phải|[[Đồ thị Petersen có sắc số bằng 3.]] Trong Lý thuyết đồ thị, **tô màu đồ thị** (tiếng Anh: _graph coloring_) là trường hợp đặc biệt của gán nhãn đồ thị, mà trong đó mỗi
nhỏ|phải|[[Đồ thị Petersen có sắc số bằng 3.]] Trong Lý thuyết đồ thị, **tô màu đồ thị** (tiếng Anh: _graph coloring_) là trường hợp đặc biệt của gán nhãn đồ thị, mà trong đó mỗi
nhỏ|phải|[[Đồ thị Petersen có sắc số bằng 3.]] Trong Lý thuyết đồ thị, **tô màu đồ thị** (tiếng Anh: _graph coloring_) là trường hợp đặc biệt của gán nhãn đồ thị, mà trong đó mỗi
**Đồ thị Turán** là một đồ thị nhiều phía đầy đủ tạo thành bằng cách chia đỉnh thành tập con, với kích thước gần nhau nhất có thể, và nối hai đỉnh bằng một cạnh
**Đồ thị Turán** là một đồ thị nhiều phía đầy đủ tạo thành bằng cách chia đỉnh thành tập con, với kích thước gần nhau nhất có thể, và nối hai đỉnh bằng một cạnh
Trong lý thuyết đồ thị, một **đồ thị phẳng** là một đồ thị có thể được nhúng vào mặt phẳng, tức là có thể được vẽ trên mặt phẳng sao cho các cạnh chỉ gặp
Trong lý thuyết đồ thị, một **đồ thị phẳng** là một đồ thị có thể được nhúng vào mặt phẳng, tức là có thể được vẽ trên mặt phẳng sao cho các cạnh chỉ gặp
Trong lý thuyết đồ thị, một **đồ thị chính quy**, còn gọi là **đồ thị đều** (tiếng Anh: _regular graph_) là một đồ thị trong đó mỗi đỉnh có số láng giềng bằng nhau, nghĩa
Trong lý thuyết đồ thị, một **đồ thị chính quy**, còn gọi là **đồ thị đều** (tiếng Anh: _regular graph_) là một đồ thị trong đó mỗi đỉnh có số láng giềng bằng nhau, nghĩa
Tính liên thông (connectivity) là một trong những tính chất quan trọng nhất của đồ thị nói riêng và lý thuyết đồ thị nói chung. ## Định Nghĩa Một đồ thị được gọi là liên
Tính liên thông (connectivity) là một trong những tính chất quan trọng nhất của đồ thị nói riêng và lý thuyết đồ thị nói chung. ## Định Nghĩa Một đồ thị được gọi là liên
**Truyền thuyết đô thị Nhật Bản** là những câu chuyện được lưu truyền trong dân gian Nhật Bản và được cho là có thật, dù chưa có bằng chứng xác thực. Những truyền thuyết đô thị này thường
**Truyền thuyết đô thị Nhật Bản** là những câu chuyện được lưu truyền trong dân gian Nhật Bản và được cho là có thật, dù chưa có bằng chứng xác thực. Những truyền thuyết đô thị này thường
**Truyền thuyết đô thị Nhật Bản** là những câu chuyện được lưu truyền trong dân gian Nhật Bản và được cho là có thật, dù chưa có bằng chứng xác thực. Những truyền thuyết đô thị này thường
Trong lý thuyết đồ thị, đồ thị **Petersen** là 1 đồ thị vô hướng với 10 đỉnh và 15 cạnh. Nó thường được sử dụng làm minh họa trong khi trình bày các lý thuyết
Trong lý thuyết đồ thị, đồ thị **Petersen** là 1 đồ thị vô hướng với 10 đỉnh và 15 cạnh. Nó thường được sử dụng làm minh họa trong khi trình bày các lý thuyết
Trong lý thuyết đồ thị, đồ thị **Petersen** là 1 đồ thị vô hướng với 10 đỉnh và 15 cạnh. Nó thường được sử dụng làm minh họa trong khi trình bày các lý thuyết
Hình:Cycle Graphs.PNG| Các đồ thị chu trình . Trong lý thuyết đồ thị, **đồ thị chu trình** (tiếng Anh: _Cycle graph_) chính là chu trình đơn. Nó có hình dạng của đa
Hình:Cycle Graphs.PNG| Các đồ thị chu trình . Trong lý thuyết đồ thị, **đồ thị chu trình** (tiếng Anh: _Cycle graph_) chính là chu trình đơn. Nó có hình dạng của đa
Hình:Cycle Graphs.PNG| Các đồ thị chu trình . Trong lý thuyết đồ thị, **đồ thị chu trình** (tiếng Anh: _Cycle graph_) chính là chu trình đơn. Nó có hình dạng của đa
**Định lý năm màu** (còn gọi là _định lý bản đồ năm màu_): Mọi đồ thị phẳng (G) đều có số màu . Là một kết quả từ Lý thuyết đồ
**Định lý năm màu** (còn gọi là _định lý bản đồ năm màu_): Mọi đồ thị phẳng (G) đều có số màu . Là một kết quả từ Lý thuyết đồ
**Chuỗi bậc** trong lý thuyết đồ thị là danh sách bậc của các đỉnh thuộc đồ thị. Với đồ thị G và n đỉnh, chuỗi bậc của đồ thị là dãy (d1, d2,..., dn), trong
**Chuỗi bậc** trong lý thuyết đồ thị là danh sách bậc của các đỉnh thuộc đồ thị. Với đồ thị G và n đỉnh, chuỗi bậc của đồ thị là dãy (d1, d2,..., dn), trong
Trong lý thuyết đồ thị, **ma trận bậc** (tiếng Anh: **degree matrix**) là một ma trận đường chéo (_diagonal matrix_) chứa thông tin về bậc của mỗi đỉnh. ## Định nghĩa Cho một đồ thị
Trong lý thuyết đồ thị, **ma trận bậc** (tiếng Anh: **degree matrix**) là một ma trận đường chéo (_diagonal matrix_) chứa thông tin về bậc của mỗi đỉnh. ## Định nghĩa Cho một đồ thị
Trong lý thuyết đồ thị, **định lý Kirchhoff**, hay **định lý Kirchhoff cho ma trận và cây**, đặt tên theo Gustav Kirchhoff, là một định lý về số cây bao trùm của một đồ thị.
Trong lý thuyết đồ thị, **định lý Kirchhoff**, hay **định lý Kirchhoff cho ma trận và cây**, đặt tên theo Gustav Kirchhoff, là một định lý về số cây bao trùm của một đồ thị.
Trong lý thuyết đồ thị, **định lý Kirchhoff**, hay **định lý Kirchhoff cho ma trận và cây**, đặt tên theo Gustav Kirchhoff, là một định lý về số cây bao trùm của một đồ thị.
Trong lý thuyết đồ thị, có hai định lý được gọi là **định lý Dirac** (tiếng Anh: _Dirac's theorem_), cả hai đều được đặt theo tên nhà toán học Gabriel Andrew Dirac: :1. Cho _G_
Trong lý thuyết đồ thị, có hai định lý được gọi là **định lý Dirac** (tiếng Anh: _Dirac's theorem_), cả hai đều được đặt theo tên nhà toán học Gabriel Andrew Dirac: :1. Cho _G_
Trong lý thuyết đồ thị, có hai định lý được gọi là **định lý Dirac** (tiếng Anh: _Dirac's theorem_), cả hai đều được đặt theo tên nhà toán học Gabriel Andrew Dirac: :1. Cho _G_
**Phép đẳng cấu đồ thị** (tiếng Anh: _graph isomorphism_) là một song ánh giữa các tập đỉnh của hai đồ thị và : : với tính chất rằng cặp đỉnh
**Phép đẳng cấu đồ thị** (tiếng Anh: _graph isomorphism_) là một song ánh giữa các tập đỉnh của hai đồ thị và : : với tính chất rằng cặp đỉnh